2016-2017第一学期抽象代数期中考试

一、判断题

(\(\quad\))1.在\(\mathbb{R}\)中,关系\(x\sim y\Longleftrightarrow |x-y|\leqslant 2\)是等价关系.

(\(\quad\))2.\(\mathbb{R}\)关于运算\(a\ast b=a+b-ab\)构成幺半群.

(\(\quad\))3.半群\(G\)是群当且仅当满足左右消去率.

(\(\quad\))4.若有限群\(G\)的任何真子群都是循环群,则\(G\)是循环群.

(\(\quad\))5.若\(G\)按代表元分类可表示为\(a_1H\cup a_2H\cup \cdots \cup a_nH=Ha_1 \cup Ha_2 \cup \cdots \cup Ha_n\),则\(H \triangleleft G\).

二、填空题

1.设\(a\)为2阶元,\(b\)为3阶元,\(ab=ba\),则\(ab\)是____阶元.

2.6阶循环群有____ 个子群.写出\(Z_6\)的所有子群____.

3.设\(\sigma =(134)(57)\)\(\tau =(327)(26)(14)\),则\(\sigma \tau \sigma^{-1}=\)____,\(\tau\)可写为不相交的轮换之积____,\(\tau\)的阶数是____.

4.写出\(Z_{12}\)的所有生成元____.

5.设\(f:\{\mathbb{R};+\}\rightarrow \{\mathbb{C}^\ast;\cdot\}\)\(f(x)=\cos x+\sqrt{-1}\sin x,\forall x \in \mathbb{R}\),则\(\ker f=\)____.

6.凯莱(Cayley)定理中,任何一个群都与一个____同构.

7.叙述群同态基本定理____.

三、群\(G(|G|>2)\)中的任意元素\(x\)满足\(x^2=e\),证明\(G\)必有4阶子群.

四、设\(H,K\)是乘法群\(G\)的两个子群,定义\(HK=\{hk|h\in H,k\in K\}\),证明

(1)\(HK\)\(G\)的子群当且仅当\(HK=KH\).

(2)若\(H,K\)均是\(G\)的正规子群,则\(HK\triangleleft G\).

(3)\(|HK|=|H||K|/|H\cap K|\).

五、设\(N\triangleleft G\),若\(N<H \triangleleft G\Longrightarrow N=H\),则称N是G的极大正规子群.证明:若\(N\)\(G\)的极大正规子群,则\(G/N\)必为单群.


Last update: July 26, 2020