2016-2017第一学期抽象代数期末考试

一、若环\(R\)的任意非零元\(a\)都满足\(a^2=a\),证明:\(R\)是交换环.

二、写出\(\mathbb{Z}_6\)的所有理想.

三、写出\(\mathbb{Z}[\sqrt{-1}]\)的所有单位.

四、写出\(\mathbb{Q}(\sqrt{3},\sqrt{5})\)\(\mathbb{Q}\)下的基.

五、设\(\displaystyle R=\Bigg\{\left(\begin{array}{cc}a&b\\0&c\end{array}\right)\in F^{2\times 2}\Bigg|a,b,c\in F \Bigg\},I=\Bigg\{\left(\begin{array}{cc}0&b\\0&c\end{array}\right)\in F^{2\times 2}\Bigg|b,c\in F \Bigg\}\) 其中\(F\)是数域. 证明:\(R\)\(F^{2\times 2}\)的子环,\(I\)\(R\)的极大理想.

六、设\(f(x)=x^3+2x+3,g(x)=x^3+x\). (1)在\(\mathbb{Q}\)上分解\(f(x),g(x)\)并写出最大公因式. (2)在\(\mathbb{Z}_5\)上分解\(f(x),g(x)\)并写出最大公因式.

七、设\(\alpha\)是方程\(x^3-3x+4=0\)的根,写出\(1+\alpha\)\(\mathbb{Q}(\alpha)\)上形如\(a\alpha^2+b\alpha+c\)的逆元.

八、设\(R=\bigg\{\dfrac{m}{n}\bigg|m,n\in \mathbb{Z},(n,p)=1\bigg\}\). (1)证明\(R\)是整环,并求\(R\)的分式域. (2)证明\(R\)是主理想整环.

九、设\(K\)\(F\)的扩域,\(u \in K\)\(F\)上的代数元,且\(\deg(u,F)\)为奇数,证明:\(F(u^2)=F(u)\).


Last update: July 26, 2020