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ABSTRACT
In this paper, we investigate the exploration-exploitation

dilemma of reinforcement learning algorithms. We adapt the
information directed sampling, an exploration framework that
measures the information gain of a policy, to the continuous
reinforcement learning. To stabilize the off-policy learning
process and further improve the sample efficiency, we pro-
pose to use a randomized learning target and to dynamically
adjust the update-to-data ratio for different parts of the neural
network model. Experiments show that our approach signifi-
cantly improves over existing methods and successfully com-
pletes tasks with highly sparse reward signals.

Index Terms— Reinforcement Learning, Exploration,
Policy

1. INTRODUCTION

In recent years, deep reinforcement learning has enjoyed great
success in solving sequential decision problems in various do-
mains such as board games[1], video games[2, 3], and contin-
uous control problems[4, 5, 6]. Successes in these areas rely
on efficient and accurate simulators, as deep reinforcement
learning algorithms are known for their sample inefficiency. A
key problem that affects the efficiency of reinforcement learn-
ing algorithms is the dilemma of exploration and exploitation.

In reinforcement learning, the problem is represented as
a Markov Decision Process (MDP) that is unknown to the
agent. Thus at each time step, the current policy learned from
the limited data previously observed by the agent can be sub-
optimal. The agent needs to balance between following the
current policy and sacrificing the instantaneous rewards to in-
vestigate the poorly understood states for potentially greater
rewards. Common exploration strategies, such as ϵ-greedy
for discrete control and noise injection for continuous control,
choose exploratory actions based on random perturbations of
the agent’s current policy. These exploration methods are
undirected and can lead to exponentially slower learning[7].

A popular approach for directed exploration is to utilize
the uncertainty information in the agent’s model. For exam-
ple, the upper confidence bound (UCB)[8] algorithm sets the
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confidence interval of the estimate of rewards as an additional
bonus to promote exploration. Thompson Sampling (TS)[9]
is a related algorithm that chooses the policies according to
their probability of being optimal in the Bayesian posterior
distribution[10].

To extend these algorithms to reinforcement learning, a
major challenge is to obtain the uncertainty measures on the
MDPs. One approach is to maintain the Bayesian posterior
distribution on the value function rather than on the MDP[11].
Based on this idea, several RL algorithms with UCB[12] and
TS[13] exploration have been developed. Bootstrapped DQN
[13] maintains an ensemble of Q-functions. At the start
of each episode, Bootstrapped DQN randomly samples a Q-
function from the ensemble and acts greedily w.r.t. the sample
in that episode. However, for problems with more complex
information structures, it is possible to explore much more
efficiently than UCB or TS. A framework called information-
directed sampling (IDS)[14, 15] has been proposed for bandit
problems. The IDS framework explicitly measures the re-
duction of uncertainty caused by taking an action, i.e., the
information provided by that action.

IDS is later introduced into reinforcement learning[16],
but remains computationally intractable for practical prob-
lems with large state space, because it requires to maintain
the posterior distribution of the dynamics model and to plan
on a sampled set of models for the optimal policy at the start
of every episode. A deterministic approximation of IDS has
been proposed for discrete control problems with finite action
space[17].

In this paper, we extend the core idea of the IDS frame-
work to continuous reinforcement learning. For continuous
reinforcement learning with infinite action space, policies are
often modeled by neural networks in the actor-critic style.
Since the training of the policy relies on the value function
and both are modeled by deep neural networks, the distribu-
tion shift caused by exploratory behavior may make the learn-
ing process divergent. To mitigate this problem, we propose
to dynamically adjust the update-to-data (UTD) ratio based
on the uncertainty of the agent. Model-free off-policy rein-
forcement learning algorithms often employ a UTD ratio of
1, which means that the agent is updated roughly the same
number of times as it interacts with the environment. Chen
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et al.[18] recently achieve significant empirical results by em-
ploying a higher UTD ratio. However, a constant high UTD
ratio may cause the agents converge too quickly, and failed to
explore in the sparse environments.

Our algorithm is based on the combination of IDS frame-
work and dynamical UTD ratio. Inspired by recent advance-
ments on Bayesian reinforcement learning, our method is able
to bypass the computational intractability of planning on dy-
namics models. To stabilize the off-policy learning process
of neural networks and further improve the sample efficiency,
we also utilize the ensemble to generate a randomized learn-
ing target and employ a dynamical UTD ratio based on the
uncertainty estimate.

We evaluate our algorithm on the continuous control
benchmarks of Mujoco simulated robots[19, 20]. The evalu-
ation demonstrates that our method substantially outperforms
SAC, and a recently proposed ensemble-based algorithm
called SUNRISE[21], which uses UCB as exploration strat-
egy [22]. We further test our algorithm on a modified ver-
sion of the tasks, which have sparsified reward functions.
The results showed that our algorithm is the only one that
successfully completes the tasks with highly sparse reward
signals.

2. PRELIMINARIES

2.1. Reinforcement Learning

We model the agent-environment interaction with an MDP
(S,A, R, P, γ), where S is the state space, A the action
space, R(s, a) the unknown reward distribution, P (s′|s, a)
the unknown transition distribution, and γ ∈ [0, 1) the dis-
count factor. A policy π(·|s) ∈ P (A) maps a state s ∈ S to
a distribution over action space. Formally, the agent receives
a state st from the environment and chooses an action at
at each time step t according to its policy π, then the envi-
ronment returns the next state st+1 ∼ P (·|st, at) and the
reward rt ∼ R(st, at) for this transition. For a fixed policy
π, the discounted cumulative rewards of action a in state s
is a random variable Zπ(s, a) :=

∑∞
t=0 γ

tR(st, at), where
at ∼ π(·|st), st+1 ∼ P (·|st, at). The primary objective of
RL algorithms is to find an optimal policy π that maximizes
the expected discounted rewards Q(s, a) = E[Zπ(s, a)].

2.2. Information Directed Exploration

We will briefly review the core ideas of IDS principles under
the bandit problem for brevity, as classical bandit problem
can be considered as a single-state MDP. Denoting the MDP
as M , the agent’s action at each episode as at and the real-
ization of the stochastic reward function as rt, we have the
filtration as Ft, which is intuitively the “history" of action-
return samples {(at, rt)} observed by the agent up to episode
(t−1). The expected instantaneous return of an action a ∈ A
at episode t is defined as: EM [Ra|Ft]. We denote the optimal

action by a∗ ∈ argmaxa∈AE[Ra|Ft]. Note that it is also a
random variable and its posterior distribution is updated ac-
cording to the Bayesian rule. With some abuse of notation,
we define the instantaneous regret of the action a as the dif-
ference between the maximum expected instantaneous return
and the expected instantaneous return of the action a, which is
∆t(a) = Ea∗ [EM [Ra∗ − Ra|Ft, a

∗]]. The regret of a policy
is defined as the instantaneous regrets summing up to time T :∑T

t=1 EFt
[∆t(at)].

In the IDS framework, in order to quantify the informa-
tion gained by the agent by performing certain actions, we
also need to define the information gain function It(a). The
information ratio of a policy is defined as the ratio of the re-
gret and information gain:

Ψt(π) : P(A) → R≥0, π 7→ Eπ[∆t(a)
2|Ft]

Eπ[It(a)|Ft]
. (1)

At each time step t, the IDS exploration policy is deter-
mined by:

πIDS
t ∈ argmin

π∈P(A)

Ψt(π). (2)

We note that the existing Bayesian framework of IDS
was established for the discrete action space. Fortunately,
following a similar treatment as in the frequentist IDS
framework[15], it can be naturally extended to the case of
continuous action space.

3. PROPOSED METHOD

The intractability of IDS in continuous RL can be attributed
to the following aspects:

• Maintain the posterior distribution of MDPs

• Compute regret and information gain over the posterior

• Minimize information ratio over the infinite set of poli-
cies

Since maintaining the posterior distribution for large
MDPs is difficult, we choose the alternative to track the dis-
tribution of the optimal value functions. Specifically, we use a
bootstrapped ensemble as an approximation for the posterior.
With the optimal policy determined by the value function,
dynamic programming over the MDP is bypassed. To tackle
the continuous action space, we choose to use SAC[23] as the
base algorithm to form an ensemble.

We denote the ensemble as {(πn, Qn)}Nn=1. For each pol-
icy network πn the input is a state s and output a stochastic
policy, and for value network Qn the input is a pair of state-
action (s, a) and output is an estimate of the action value. The
neural network parameters are not shared between each pair
of actor-critic in our implementation. The set of all critics
constitutes an approximation of the posterior distribution.
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With the approximated posterior of the value function, we
can compute the estimates of instantaneous regret and infor-
mation gain. The notion of instantaneous regret can be nat-
urally extended to reinforcement learning as the difference
between the maximum action-value and the action-value for
a: ∆t(s, a) = Ea∗ [EM [Q(s, a∗)−Q(s, a)|Ft, a

∗].
Specifically, given an ensemble of actor-critics {(πn, Qn)}Nn=1,

we can compute the empirical mean and variance of action-
value as:

µ̂(s, a) =
1

N

N∑
n=1

Qn(s, a),

σ̂2(s, a) =
1

N

N∑
n=1

(Qn(s, a)− µ(s, a))2.

(3)

The computation of regret relies on the posterior distri-
bution of the optimal action a∗, which can also be estimated
with the approximated posterior. In this paper, we use a con-
servative surrogate function of the instantaneous regret based
on the empirical mean and variance:

∆̂t(s, a) = max
a′∈A

(µ̂t(s, a
′) + λtσ̂t(s, a

′))

−(µ̂t(s, a)− λtσ̂t(s, a))
(4)

where λt is a scaling hyperparameter. Intuitively, the first
term corresponds to the stochastically plausible maximum
value at the given state, while the second term provides a
heuristic lower bound for the chosen action.

The notion of information gain can be extended to RL in a
similar manner. In this paper, we define the information gain
function as

It(s, a) := log(1 + σ2
t (s, a)) (5)

which prioritizes actions that carry more uncertainty.
Finally, we reformulate the empirical information ratio for

reinforcement learning as

Ψ̂t(π, s) = Ea∼π(·|s)[∆̂t(s, a)
2 − ηIt(s, a)] (6)

where we add a hyperparameter η to adjust the behavior pol-
icy’s sensitivity to the information gain. As η → 0, it will
reduce to a conservative exploration policy and vice versa.

In theory, the IDS framework guarantees that the optimal
exploration policy obtained from Eq (2) has a support set of
size no more than two[15, 14] . However, in order to obtain
such an optimal policy, we need to minimize over the set of
all distributions.

In our algorithm, we utilize the ensemble of policy net-
works to generate a candidate set of deterministic exploration
policies. Since the training of the policy ensemble holds the
same elements as the training of the Q ensemble, i.e., boot-
strapped data, distinct objectives, and a stochastic training
process, we argue that the policy ensemble can be considered

Algorithm 1: IDS for continuous RL

Input: The ensemble {(πn, Qn)}Nn=1, candidates
size K

1 for each time step t do
2 for each π in {πn}Nn=1 do
3 Sampling candidate deterministic policies

{ai}ki=1 according to π(·|s);
4 end
5 for each ai in {ai}Ki=1 do
6 Compute µ̂(s, ai) and σ̂2(s, ai) according to

(3);
7 Compute ∆̂(s, ai) according to (4);
8 Compute Î(s, ai) according to (5);
9 Compute Ψ̂(s, ai) according to (6);

10 end
11 Execute the action that minimizes Ψ̂(s, a).
12 end

as an approximated distribution of the optimal policy func-
tion.

As the policies of SAC are inherently stochastic, we can
scale the number of candidate policies by generating k ≥ 1
actions for each πn. We denote the set of candidate policies
proposed by the policy ensemble as {an}Kn=1, where K :=
k ×N .

3.1. Uncertainty based UTD ratio

In our algorithm, exploratory policies are determined by the
IDS framework, and the significant distribution shift between
the behavior policy and target policy can lead the training
to diverge. Moreover, since candidate policies are generated
by the policy networks, inconsistency between the policy and
value networks can affect the quality of exploratory policies.

Inspired by REDQ[18], we use a subset of the ensemble to
generate a conservative target for each Qi to stabilize training:

yi(r, s
′) := r + γ min

j∈M
(Qj (s′, a′)− log πj(a′|s′))

where M is a uniformly random subset from the ensemble
and a′ ∼ πj(a|s′) is a sampled action.

With conservative targets to stabilize training, we can use
a high UTD during the training of the algorithm. However, a
conservative target and a constant high UTD ratio may cause
the agent to converge too quickly to sufficiently explore the
environment. We propose to dynamically adjust the UTD ra-
tio based on the variance of the targets . Specifically, at ev-
ery training step of the value networks, the agent will stop
according to the Bernoulli distribution Bern(p), where p =
Sigmoid(−σ̂2(s, a)) + 1

2 . The update of the policy network
occurs when the value networks stop. Intuitively, the UTD
ratio will be higher when the empirical variance is large to
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speed up training and improve sample efficiency, and lower
when the empirical variance is small to avoid overfitting and
help exploration.

4. EXPERIMENTS

We evaluate our algorithm on Mujoco environments [19]
through the OpenAI Gym[20] interface. Three challenging
environments, Hopper, Ant and Walker2d are selected.

We use the same hyperparameters in vanilla SAC[23] in
the ensemble for all experiments. In evaluation mode, the ac-
tion is chosen greedily with regard to the mean action value,
i.e. a = argmax

∑
n Qn(s, a

′)/N . We report the perfor-
mance every 10K steps. Three additional hyperparameters
are added for empirical regret estimation, including the en-
semble size N , the scaling λ and the bootstrapped sampling
proportion β. We find that by setting β = 1 the agent con-
sistently achieves better performance, which means that the
models in the ensemble are trained on all samples collected
by the agent. We argue that the stochasticity in initialization
and training of neural network can induce enough diversity in
the ensemble, while setting β = 1 allows each network in the
ensemble to train on more data. We also evaluate the impact
of different ensemble sizes N on the dense environment. The
performance improves by increasing the ensemble size and
saturates when the ensemble size reaches 8.

We compare our algorithm to the a recently proposed
ensemble algorithm SUNRISE that uses UCB to explore and
further utilizes the parametric uncertainty to stabilize the
training process[21]. We also evaluate our algorithm on a
sparsified version of the environments, where the rewards
are set to zero when they are lower than a certain threshold
τ , which requires the algorithms to actively explore to learn
non-trivial behavior. To demonstrate the effectiveness of the
IDS method, we designed the threshold value for each en-
vironment separately, so that the agent would face a ∼ 90%
sparse environment at initialization. We report the mean and
standard deviation of averaged returns over four runs in Fig1.
For baselines, we use the implementation in SUNRISE[21].

Experiments show that our algorithm improves signifi-
cantly over SAC and outperforms the existing efficient RL
methods in all three environments. In the absence of dynamic
UTD ratio, the sampling efficiency is still a little better than
SUNRISE in the dense environment. However, in the sparse
environment, only the IDS-based algorithm successfully ex-
plores all three environments, as shown in Fig1, while the ab-
sence of dynamic UTD slows down the learning speed. The
results suggest that combining the dynamic UTD ratio can
significantly boost the proposed IDS method.

5. CONCLUSIONS

In this paper, we extend the idea of information-directed sam-
pling to the setting of continuous reinforcement learning. In

(a) Hopper (b) Sparse-Hopper

(c) Walker2d (d) Sparse-Walker2d

(e) Ant (f) Sparse-Ant

Fig. 1: Learning curves on the original and sparsified environ-
ments. The solid line and shaded regions represent the mean
and standard deviation across four runs.

combination with uncertainty-based dynamic UTD ratios, the
resulting approach significantly outperforms existing meth-
ods and enables exploration in highly sparse environments.
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