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Abstract

The rapidly growing global population presents chal-
lenges and demands for efficient production of healthy
fresh food. Autonomous greenhouses equipped with
standard sensors and actuators (such as heating and
lighting), which enable control of indoor climate for
crop production, contribute to producing higher yields.
However, they require skilled and expensive labor, as
well as a large amount of energy. An autonomous green-
house control strategy, powered by AI algorithms by op-
timizing the yields and resource use simultaneously, of-
fers an ideal solution to the dilemma. In this paper, we
propose a two-stage planning framework to automati-
cally optimize greenhouse control setpoints given spe-
cific outside weather conditions. First, we take advan-
tage of cumulative planting data and horticulture knowl-
edge to build a multi-modular simulator, using neural
networks to simulate climate change and crop growth in
the greenhouse. Second, two AI algorithms (reinforce-
ment learning and heuristic algorithm) are applied as
planning methods to obtain optimal control strategies
based on the simulator. We evaluate our framework on a
cherry tomato planting dataset and demonstrate how the
simulator is able to simulate greenhouse planting pro-
cesses with high accuracy and fast speed. Moreover, the
control strategies produced by the AI algorithms all ob-
tain superhuman performance, and in particular, signifi-
cantly outperform all teams of the second “Autonomous
Greenhouse Challenge” in terms of net profits.

Introduction
The global population is growing rapidly and is accompa-
nied by the increasing demand for healthy and fresh food.
Greenhouses and indoor farming systems have the poten-
tial to maintain suitable conditions for crop growth regard-
less of outdoor season and climate so as to prolifically and
stably supply vegetables (Graamans et al. 2018). In many
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countries, the greenhouse industry is becoming an impor-
tant crop production sector (CBI 2019). Meanwhile, the
scarcity of natural resources is a rising problem around the
world, which makes improving the utilization efficiency of
energy an urgent matter (Bank 2020). Therefore, a green-
house grower needs to balance yields and resource consump-
tion. However, laborers qualified for operations in high-tech
greenhouses (Sparks 2018) are expensive and scarce. Con-
sequently, as farms expand, overseeing multiple greenhouse
compartments simultaneously becomes a serious challenge.

Modern high-tech greenhouses are equipped with stan-
dard sensors, actuators (such as heating, lighting, CO2 dos-
ing, etc.) and process computers in order to provide a suit-
able climate for crop growth. A greenhouse grower needs
to determine their climate and irrigation strategy based on
experience and determine control setpoints manually. The
process computers are responsible for controlling the execu-
tion of the actuators’ setpoints. Sensors collect signals from
indoor climate and crop status to provide feedback for fu-
ture decision-making. Generally, in a typical 160-day cycle
of crop growing, the dimensions of space for controlling pa-
rameters alone are astronomical. Humans, even greenhouse
experts, are only able to give coarse-grained control strate-
gies based on extremely partial observations.

Indeed, determining the control strategy for a greenhouse
is an extremely complex planning problem. With a faithful
simulator, we can utilize AI algorithms to assist in finding
the optimal solution. In the last several decades, dynamic cli-
mate models have been widely developed (Cate 1984; Tan-
tau 1980; Van Straten et al. 2010), and there are also works
targeting crop models (Gary, Jones, and Tchamitchian 1998;
Marcelis et al. 2009). However, existing models rely mainly
on expert knowledge (physics and biology), which are diffi-
cult to transfer to other conditions. Even worse, the inference
speed of these models, based on expert rules, is slow. Today,
neural networks, or deep learning, have replaced the expert
system in many fields (Chellapilla et al. 1999; Base 1995;
Imrak 2008), but their application in greenhouse climate and
crop simulation is lacking.

Deep reinforcement learning methods that have emerged
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in recent years (Van Hasselt, Guez, and Silver 2015; Schul-
man et al. 2017; Haarnoja et al. 2018; Fujimoto, Meger, and
Precup 2019), and mature heuristic algorithms (Kuo, Cheng,
and Chen 2003; Ponsich et al. 2008) are usually used to solve
planning problems in practice applications. There are some
works using reinforcement learning algorithms to control
greenhouse climate automatically in order to use resources
more efficiently (Bhattacharya, Lobbrecht, and Solomatine
2003; Wang, He, and Luo 2020). To the best of our knowl-
edge, there has been little progress in simulator-based AI to
optimize yields and resource consumption simultaneously.

This paper aims to resolve the aforementioned challenges
and offer a solution to obtain optimal greenhouse control
strategy automatically given specific outside weather. First,
based on neural networks and horticultural knowledge, we
build a greenhouse climate and crop simulator in a three-
layer cascade. Second, we adopt state-of-the-art deep re-
inforcement learning (Haarnoja et al. 2018) and a mature
heuristic algorithm (Bhandari, Murthy, and Pal 1996) as aux-
iliary tools, optimizing greenhouse control strategies based
on our simulator. The contributions of our work include:

• We propose a novel two-stage framework to obtain opti-
mal greenhouse control strategy automatically. In the first
stage, we build a greenhouse climate and crop simulator;
in the second stage, we use two AI algorithms to optimize
control strategies based on our simulator.

• We design a data-driven multi-modular neural-network
simulator based on the cherry tomato planting dataset,
which can simulate greenhouse climate and crop states
with high accuracy and fast speed on an hourly basis.

• Experiments on our simulator demonstrate that the control
strategies offered by AI algorithms significantly outper-
form all teams of the second “Autonomous Greenhouse
Challenge” (Hemming et al. 2020) in terms of net profits.

Problem Statement
In this work, we formulate the greenhouse control problem
as a deterministic Markov decision process (MDP) problem.
In the following, we give the necessary background for the
MDP and formally introduce the problem of autonomous
greenhouse control under weather uncertainty.

MDP Introduction
A MDP can be denoted by a tuple S = (S, s0,A,P,R, γ),
where S ⊆ Rn and A ⊆ Rm represent the state and action
spaces, respectively, s0 ∈ S is the initial state, P (s′ | s, a)
denotes the probability that s′ ∈ S is reached after execut-
ing action a ∈ A in state s ∈ S ,R(s, a, s′) is the immediate
reward of executing action a to transition from state s to s′,
and γ ∈ (0, 1] is the discount factor to encourage short-term
gains. A solution to S is a stochastic policy π that maps a
state s to a probability distribution over A. We denote by
π(a | s) the probability of a to be selected facing state s. At
each time step t, the agent is asked to select an action at ac-
cording to policy π, generating a trajectory of states, actions
and rewards, i.e., τ = (s0, a0, r0, s1, a1, . . . , sT ), where
at ∼ π (. | st), st+1 ∼ P (. | st, at), rt = R (st, at, st+1),

and T is the terminate time step. For a given MDP, the opti-
mal policy π∗ maximizes the cumulative expected return:

π∗ = argmax
π

Eτ

[
T−1∑
t=0

γtrt

]
(1)

Greenhouse Control in Uncertain Weather
The goal in optimizing autonomous greenhouse control
strategy under non-deterministr weather is to find a policy
that maximizes the cumulative expected return and consid-
ers crop yields and resource consumption simultaneously.

There are many factors that affect the greenhouse planting
process, but we focus only on the factors that have a large
impact in order to simplify the problem. Formally, a green-
house control process is a tuple G =< C,G, P,A,W >,
where c ∈ C ⊆ Rk1 denotes the indoor climate of the green-
house, g ∈ G ⊆ Rk2 is the crop growth state, p ∈ P ⊆ R+

is the current production, a ∈ A follows the control strategy
and w ∈W represents the outside weather.

In autonomous greenhouse control, the indoor climate c,
adjusted by action a, greatly affects the crop state g and pro-
duction p. Their relationship of influence with each other is
subject to specific physical laws, so it is deterministic. In
contrast, outside weather w is independent and uncertain.
We assume that there exists a set of weather W , and the
probability of observing outside weather w ∈W at time t is
given by the weather model Pw(w | t). In principle, weather
models vary from place to place, raising challenges to the
optimization of automatic greenhouse control.

Deterministic Autonomous Greenhouse Control
In our implementation, the weather data available to us is
specified. Under this condition, the greenhouse control prob-
lem can be modeled as a deterministic MDP, whose transi-
tion function P (s, a) is deterministic rather than a probabil-
ity distribution. Additionally, we assume that other variables
beyond the variables in Table 1 and Table 2 have no effect
on the state-transition function. We are now able to specify
the state space, action space, reward function, and transition
function of this deterministic MDP.

• State space: For each time step t, the state consists of a
four-tuple < w, c, g, p >. The specific variables are given
in Table 1. Each variable of the state is a real value with
different units which encode the different information, de-
termining the growth status of the crop.

• Action space: We focus on the actions, i.e., temperature,
CO2 concentration, lighting, and irrigation as the four
most important control variables of the greenhouse for
learning automatic control strategy.

• Reward function: In greenhouse control, we aim to in-
crease crop yields while decreasing costs associated with
the control strategy. In the simplest trade-off, we define
the reward as the gains minus the costs. The specific for-
mulation of the reward function is given in the following
section.

• Transition function: The transition function in au-
tonomous greenhouse control has no explicit expression.
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Category Name Description Unit
Outside
weather Iglob outside solar radiation W/m2

Tout outside temperature ◦C
RHout outside humidity %
CO2out outside CO2 concentration ppm
Windsp outside wind speed m/s
Tsky virtual sky temperature ◦C

Indoor
climate AirT inside temperature ◦C

AirRH inside humidity %
AirCO2 inside CO2 concentration ppm
PAR light intensity above crop umol/s

Crop
state LAI leaf area index -

PlantLoad number of growing fruits fruits/m2
NetGrowth photosynthesis net growth kg CH2O/s

Production FW fruit fresh weight kg/m2

Table 1: Basic state variables defined in this paper.

Action (setpoint) Unit
greenhouse temperature setpoint ◦C
greenhouse CO2 concentration ppm
light on/off -
irrigation on/off -

Table 2: Basic action variables defined in this paper.

In this work, we focus on estimating and approximating
this function through a multi-modular model.

Problem Formulation
Given the deterministic autonomous greenhouse control
MDP, the optimization objective is defined as:

argmax
π

T−1∑
t=0

γtrt

s.t.


γ = 1,

at = π(st) (i = 0, · · · , T − 1),

st+1 = P(st, at) (i = 0, · · · , T − 1),

rt = R(st, at, st+1) (i = 0, · · · , T − 1),

where the reward function R and the transition function P
will be introduced in the following.

Simulator as an Approximation
In the preliminaries, we model the optimization of the green-
house control strategy as a single objective optimization
problem, where the ground truth of the real transition func-
tion P in the greenhouse is implicit. We can build a sim-
ulator to approximate and fit this transition function. How-
ever, the construction of a specific greenhouse planting sim-
ulator usually requires corresponding expert experience and
physical models (Van Straten et al. 2010; Gary, Jones, and
Tchamitchian 1998; Marcelis et al. 2009), and different do-
main knowledge is required for different crops, which limits
the flexibility of building a simulator. In order to alleviate

...Ct

...
Wt

Iglob

...

illu

At

...

...
Ct+1

PAR

...

...

Figure 1: Greenhouse climate simulation module using cur-
rent outside weather wt, indoor climate ct and control ac-
tions at to predict the next indoor climate ct+1. PAR is de-
termined by Iglob and illumination using a separate neuron
channel.

these problems, we divided the state transition function into
three modules trained in a data-driven manner.

Greenhouse Climate Simulation
The crop status is mainly determined by the indoor climate.
Therefore, we first built a model to simulate greenhouse cli-
mate change. The indoor climate at the time step t + 1, de-
noted by ct+1, is influenced by current outside weather wt
and prior indoor climate ct. Additionally, we applied action
at to greenhouse actuators to adjust the indoor climate.

To sum up, the indoor climate change can be formalized
as ct+1 ← C(wt, ct, at), where C represents the transi-
tion function of indoor climate change. Specifically, the dy-
namic greenhouse climate model is a tuple < W,C,A >:
W × C × A → C, where W ⊆ R6, C ⊆ R4, A ⊆ R4 (see
Table 1 and Table 2 for details). Previous research mainly
adopts aerodynamic methods for modeling C, relying heav-
ily on domain knowledge (Van Straten et al. 2010). In con-
trast, we propose a greenhouse climate simulation model
ct+1 ← CΘ1(wt, ct, at) based on neural networks, where
Θ1 represents network parameters. The model structure is
shown in Figure 1.

Notice that the photosynthetically active radiation (PAR)
is determined by solar radiation intensity and the power
of the lamps (Alados, Foyo-Moreno, and Alados-Arboledas
1996); we designed a dedicated neuron channel for it (shown
in Figure 1). Moreover, we assume the state of the green-
house climate will change per hour, which is considered ac-
curate enough to approximate reality. We adopt mean-square
error as loss function; the formula is as follows:

L (Θ1) =
1

N

N∑
i=1

4∑
k=1

(
ĉ
(k)
i − c

(k)
i

)2

(2)

where L(Θ1) represents the average loss of N samples, ĉ(k)
i

and c(k)
i represent the real and prediction values of the k-th

indoor climate variable of the i-th sample, respectively.
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Gt
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Gt+1

Figure 2: Growth state simulation module using current in-
door climate ct and crop growth state gt to predict the next
growth state gt+1.

Crop Simulation
Different from indoor climate change, the final crop produc-
tion is affected by indoor climate, crop state and initial crop
production. Therefore, the crop production can be formu-
lated as a tuple < G,C, P >: G × C × P → P , where
G ⊆ R3, C ⊆ R4 and P ⊆ R. Detailed description of
each element is shown in Table 1. The transition function
of crop growth is modeled as a two-step function. First, we
model the effect of the greenhouse climate on crop status,
then model the relation of crop status and crop yield, corre-
sponding to growth state module and production module.

Growth State Module. The state of greenhouse crops at
time t is denoted by gt, and the greenhouse indoor climate
ct can be calculated via the greenhouse climate model. We
consider the direct effect of indoor climate on crop growth
state; then, the growth state model can be formulated by a
tuple < G,C >: G× C → G, where G ∈ R3 and C ∈ R4.

To get rid of dependence on horticultural knowl-
edge (Gary, Jones, and Tchamitchian 1998), we built a neu-
ral network model GΘ2 to simulate the transition function
G with respect to the crop growth process. Moreover, we
used maximum and minimum normalization methods (Sola
and Sevilla 1997) to eliminate dimensional differences. As
the greenhouse climate changes, the crop status will be af-
fected. Thus, we assumed that the crop status will change
per hour just like the greenhouse climate status. Similarly
to the greenhouse climate model, we used the mean-square
error as the loss function.

Production Module. The change of crop production
within one hour is intangible, so it is reasonable to assume
yields will change only once per day. Since G corresponds
to hour level and P corresponds to day level, we extend G
to ~G =

[
G(0), G(1), · · · , G(23)

]
so that ~G is aligned with P

on time scale, where g(i)
d ∈ G(i) represents the growth state

with respect to the i-th hour of day d. Due to crop growth
state accumulating over time in our model, we only need to
consider g(23)

d . Then, the production pd+1 of day (d+1) can
be deduced by pd+1 ← P(pd, g

(23)
d ), where P represents the

underlying transition function of yield.

Gt

Pt

Pt+1...

Figure 3: Production simulation module using current
growth state gt and production pt to predict the next pro-
duction pt+1.

In a similar fashion to simulating greenhouse cli-
mate change, neural networks, parameterized by Θ3, are
used to model the crop production process: Pd+1 ←
PΘ3

(Pd, G
(23)
d ). The network structure is shown in Figure

3.

Reward Function
The organizers of the second “Autonomous Greenhouse
Challenge” have publicized economic evaluation metrics.
Similarly, we use NetProfit as a reward, which depends
on gains and resource consumption.1 Note that we do not
consider FixedCosts, which are constant regardless of the
growing strategy.

Solution to Greenhouse MDP
There are many methods to solve MDP, such as dynamic
planning methods and AI algorithms. AI algorithms have
proven to be a more efficient way to solve MDP (Lee et al.
2020), so we consider two typical AI algorithms, includ-
ing a reinforcement learning method and a heuristic algo-
rithm. As shown in Figure 4, we propose a two-stage plan-
ning framework to solve the autonomous greenhouse con-
trol MDP problem. First, using cumulative data to train a
greenhouse crop cultivation simulator built in the previous
section. Second, according to the simulator, AI algorithms
are applied as planning methods to obtain optimal control
strategies, which will be described in the following.

Soft Actor-Critic Reinforcement learning (RL) algo-
rithms have shown their effectiveness in solving autonomous
decision-making problems. In this work, we choose Soft
Actor-Critic (SAC) (Haarnoja et al. 2018) as a representative
of RL to learn a control strategy based on the simulator. SAC
is a state-of-the-art off-policy algorithm for continuous con-
trol problems, which is based on the maximum entropy RL
framework. SAC is robustness to noise and encourages ex-
ploration by maximizing a weighted objective of the reward
and the policy entropy (Lee et al. 2020). SAC alternates be-
tween a soft policy evaluation and a soft policy improvement
to learn a critic, Qθ(s, a), and a policy, πφ(a|s).

1The detailed formula are available at https://www.
kaggle.com/piantic/autonomous-greenhouse-challengeagc-
2nd-2019?select=Economics.pdf
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AI Algorithm
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Agent
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Actuators

Simulate

Greenhouse

Heating
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Figure 4: The general two-stage framework to optimize the autonomous greenhouse control strategy. To be specific, the opti-
mizing process can be divided into two stages. First, we use the collected planting data in the real greenhouse as input to train a
simulator that can approximate the real state transition function P; then, we use AI algorithms to obtain the suboptimal policy
in the simulator, which can be deployed as an approximate optimal control strategy to the real greenhouse.

At the soft policy evaluation step, a critic modeled as a
neural network with parameters θ is optimized by minimiz-
ing the soft Bellman residual:

LSAC
critic (θ) = Eτt∼B

[
1

2

(
Qθ (st,at)− Q̂ (st,at)

)2
]

(3)

with

Q̂ (st,at) = rt + γEat+1∼πφ

[
Q̂ (st+1,at+1)

]
(4)

Here, SAC uses a modified Q-function by adding an
entropy-based regularization term to encourage the agent’s
exploration,

Q̂ (st+1,at+1) = Qθ̄ (st+1,at+1)− α log πφ (at+1 | st+1)
(5)

where τt = (st, at, rt, st+1) is a transition sample gener-
ated by the simulator, B is a replay buffer storing the col-
lected transitions, θ̄ are the delayed parameters and α is a
temperature parameter. At the soft policy improvement step,
the policy π with its parameters φ can be learned by directly
minimizing the following loss:

LSAC
actor (φ) = Est∼B [Lπ (st, φ)] (6)

where

Lπ (st, φ) = Eat∼πφ [α log πφ (at | st)−Qθ (st,at)] (7)

Here, the policy is modeled with a Gaussian distribu-
tion based on neural networks to handle continuous action

Algorithm 1: Soft Actor-Critic
1 Initialize policy πφ and Qθ.
2 for Nepoch iterations do
3 for each step t do
4 at ∼ πφ (at | st1)
5 st+1 ∼ p (st+1 | st,at)
6 B ← B ∪ {(st,at, r (st,at) , st+1)}
7 end
8 for each gradient step do
9 Update πφ and Qθ by minimising LSAC

critic (θ)

and LSAC
critic (θ)

10 end
11 end

spaces. SAC alternates between collecting transitions from
interacting with the simulator and updating the function
approximation using the stochastic gradients from batched
samples from a replay buffer. The complete algorithm is de-
scribed in Algorithm 1.

Elitist Genetic Algorithm In the previous section, we
model the greenhouse control strategy optimization prob-
lem as a deterministic NP-hard optimization problem, which
could be solved by a heuristic algorithm (Michalewicz 2013;
Ponsich et al. 2008) to find the suboptimal solution.

In this work, we apply a classic heuristic algorithm, elite
retention genetic algorithm (EGA) (Rani, Suri, and Goyal
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Algorithm 2: Elitist genetic algorithm
Input: Initial population size p size, iteration limit

itrlimit, and the composition of polysomy
polysomy

Output: Optimal strategy after itrlimit iterations
1 pop← InitializePopulation(p size)
2 strategy ← DecodeGenetics(pop)
3 ObjV ← Simulation(strategy)
4 pop.F itnV ← FitnessEvaluation(pop, ObjV )
5 parent← pop
6 for itrlimit iterations do
7 offspring ← RouletteSelect(parent, p size)
8 for each polysomy ci do
9 offspring ← Crossover(offspring, ci)

10 offspring ← Mutation(offspring, ci)
11 end
12 pop← parent ∪ offspring
13 strategy ← DecodeGenetics(pop)
14 ObjV ← Simulation(strategy)
15 pop.F itnV ← FitnessEvaluation(pop, Objv)
16 parent← SelectTopSizeFit(pop, p size)
17 end
18 BestIndividual ← SelectBestFit(parent)
19 strategy ← DecodeGenetics(BestIndividual)
20 return strategy

2019) that can accelerate convergence in our scenario to ob-
tain the optimal greenhouse control strategy. The procedure
of EGA for greenhouse control strategy is summarized in
Algorithm 2.

Considering that the state space of different variables is
significantly different, for example, temperature and carbon
dioxide concentration are continuous while illumination and
irrigation are discrete, we adopt polychromosomal coding,
in which the value of the same variable in a whole period
shares one chromosome by concatenation.

Here, we use a binary-coded method and perform
crossover and mutation on the binary string. Since the sim-
ulator requires real numbers as input, each individual in the
population will be decoded before simulating. The simulator
will return the cumulative rewards of the complete growing
period as the objective value of each individual in the popu-
lation.

Experiments

Dataset

We evaluate our framework on a tomato dataset collected
from a reliable simulator built by Wageningen University
& Research (WUR). This dataset includes more than 1,000
planting trajectories with adequate recordings of outside
weather, indoor climate, crop state, production and cost.
All state variables and action variables can be found in this
dataset. Each trajectory in this dataset records hourly data of
a 160-day planting episode.

Simulator Analysis
We build a test set by randomly selecting 50 planting trajec-
tories from the cherry tomato dataset. Then we use 100, 500
and 1,000 planting trajectories randomly selected from the
remaining dataset to train different simulators.

We use goodness of fit (R2) (Anderson and Darling 1954)
as the evaluation index of simulator accuracy. The test re-
sults of each simulator are shown in Table 3.

According to Table 3, it is evident that a simulator with-
out prior horticultural knowledge does not have any gener-
alization, which indicates that the state transition probability
P of climate and crop growth in a greenhouse is extremely
complicated and cannot be approximated by data alone.

As for the multi-modular simulators designed in conjunc-
tion with the automatic greenhouse scenario, we find thatR2

will increase with the amount of training data. The simulator
trained with 1,000 planting trajectories reaches a satisfactory
approximation of P .

Notice that the last production module of the simulator
and its fitting performance are slightly better than the crop
growth module. One of the reasons for this is that the sim-
ulation granularity of the production module is day-level.
Furthermore, the production module relies only on the state
of the last hour of the day of the crop growth module, which
greatly reduces the difficulty of the characterization.

Economic Variable Analysis
We use the dataset collected from the second “Autonomous
Greenhouse Challenge”. Five teams use AI algorithms to re-
motely control a greenhouse to grow cherry tomatoes over
an around 5-month period. A team of experienced grow-
ers also participates in the competition as references. This
dataset2 contains comprehensive recordings of various quan-
tities during the competition, such as greenhouse tempera-
ture and CO2 concentration.

WUR develops a tomato simulator that can simulate the
planting process from the above competition more accu-
rately than ours, but one simulation period takes about 10
minutes in comparison to our simulator, which takes only 4
seconds. We compare our multi-modular simulator with the
WUR simulator to test the planting process of the 160-day
competition. We plot the test results of the four teams in Fig-
ure 5.

According to Figure 5, we find that 1) The calculation
method that we design for Costs is accurate and stable; 2)
Gains: Only the simulator trained on the dataset using 1,000
trajectories could simulate the harvest situation more accu-
rately, but the yield is higher in the second half. In addition,
the simulation effects of other versions of the simulator are
unstable; 3) Netprofit: The simulator using 1000 trajecto-
ries has similar effects to the WUR simulator, and the other
versions are not enough to simulate the real planting process.

Furthermore, we explore the reason why the harvest of our
simulator is higher in the second half by analyzing the simu-
lation of the greenhouse climate module and the crop growth

2The dataset is publicly available at https://doi.org/10.4121/
uuid:88d22c60-21b3-4ea8-90db-20249a5be2a7
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Figure 5: Results generated by simulators based on a dataset with different scales and a WUR simulator after applying the same
strategy in each figure. (a)–(d) are 4 teams in the second “Autonomous Greenhouse Challenge”.

Simulator AirT AirRH AirCO2 PAR LAI PlantLoad NetGrowth FW
no prior -72.320 -96.200 -437.526 -157.749 -4.903 -1920.908 -0.540 -16.455
100-trajectory 0.841 0.612 0.872 0.934 -0.135 0.383 0.227 0.278
500-trajectory 0.872 0.625 0.906 0.935 0.214 0.460 0.685 0.554
1000-trajectory 0.961 0.851 0.966 0.935 0.630 0.829 0.959 0.952

Table 3: Goodness of fit (R2) of different variables in different simulators.

module. Figure 6 shows the comparison between the 1000-
trajectory version of the simulator and the WUR tomato sim-
ulator after applying IUACAAS’s policy.

Figure 6(a) shows that each hour’s simulation deviation
rate of every indoor climate variable in the greenhouse cli-
mate module is mostly within 10%, and the maximum error
doesn’t exceed 20%. Figure 6(b) is the simulation result of
Leaf area index (LAI). Our simulator has a higher value in
the first half, representing a stronger photosynthesis ability,
which accumulates moreNetGrowth (Figure 6(d)). Thanks
to better growth in the early stage, the fruit will mature and
be picked earlier, that is, the PlantLoad will decrease at
a faster rate in the later stage (Figure 6(c)). Therefore, the
output of our simulator will be higher in the later stage.

Comparison Methods

• IUACAAS and Reference Policies We took the IUA-
CAAS (best performance policy in our simulator) team’s
and the Reference (human-expert policy) team’s control
strategy simulation results as baselines for our simulator.

• EGA EGA is an improved genetic algorithm that im-
proves the convergence ability of the algorithm by adopt-
ing an elite retention strategy.

• SAC SAC is one of the state-of-the-art off-policy actor-
critic RL algorithms for continuous control problems.

AirT AirRH AirCO2
variable
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Figure 6: (a): Deviation rate distribution of variables be-
tween 1000-trajectory simulator and WUR simulator sim-
ulators in greenhouse climate module after applying IUA-
CAAS’s control strategy; (b)–(d): simulation values of LAI ,
PlantLoad and NetGrowth after applying IUACAAS’s
control strategy on two simulators.
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Figure 7: Cumulative balance of different control strategies.

Method HeatCost CO2Cost ElecCost LaborCost
IUACAAS 6.550 1.902 17.714 5.271
Reference 8.018 2.531 19.524 5.271
SAC 5.526 2.296 4.100 5.271
EGA 6.230 2.123 12.302 5.271

Table 4: Different kinds of cost in the simulation via using
our strategies and baselines.

Performance Comparison
As the WUR simulator is commercial equipment, it was
open to us for a limited time (closed after the second “Au-
tonomous Greenhouse Challenge”). For this reason, we can
only conduct the experiments of comparing methods on our
simulator. Table 4 and Figure 7 show the performance com-
parison of different methods on our simulator. We observe
that: (1) The performance of each behavior policy is dif-
ferent, and IUACAAS outperforms the human-experts, who
obtains a higher harvest with lower cost; (2) The net profit
of the AI algorithms we apply greatly exceed the baselines.
Taking SAC as an example, the AI algorithms have the abil-
ity to evaluate the benefit between the cost of resources con-
sumed during each hour’s action and the potential final har-
vest, thereby achieving fine control of the hourly granularity
(shown in Figure 8) and simultaneously improving resource-
use efficiency and maintaining high harvest. The baseline
strategies could only achieve 3–6 adjustments in one day,
and they remain almost unchanged for several days.

Convergence Analysis
Figure 9 plots the obtained reward in our simulator during
the training of the policies. We find that both EGA and SAC
can converge to a stable net profit, where EGA can achieve
higher net profit. The possible reason for this is that each it-
eration of EGA will consider the impact of actions at each
moment in the entire period on the final result. The SAC
pays more attention to the benefit of decision-making in the
present moment, while the importance of future benefit is
gradually reduced. In our experiment, the planting cycle is
nearly 4,000 hours, which makes it difficult for SAC to max-

0 30 60 90 120
hour

12

18

24

30

℃

(a) Temperature

0 30 60 90 120
hour

0

250

500

750

1000

pp
m

(b) CO2

0 30 60 90 120
hour

0

1

on
=1

,o
ff=

0

(c) Illumination

SAC Reference IUACAAS

0 30 60 90 120
hour

0

1

on
=1

,o
ff=

0

(d) Irrigation

Figure 8: 120-hour control strategies of SAC, Reference and
IUACAAS.

(a) EGA (b) SAC

Figure 9: Training curves of SAC and EGA.

imize the benefits of the final result, and thus, it falls into a
locally optimal solution.

Conclusion
In this paper, we propose a two-stage planning framework
to optimize the control strategy for autonomous greenhouse
planting. First, we model the autonomous greenhouse con-
trol as a deterministic MDP problem and point out that the
state transition function P is the key challenge. Then, we
build a multi-modular simulator based on neural networks
in a data-driven style to approximates P . We use real data to
verify that the simulator achieves good approximation to re-
ality. On our simulator, two AI algorithms we used both sig-
nificantly outperform all other teams’ strategies of the sec-
ond “Autonomous Greenhouse Challenge” in terms of net
profits.

To further illustrate effectiveness of our framework in the
real world, we have deployed this framework in real green-
houses based on IoT, cloud-native, and other technologies.
The experiments are in progress, for which the results will
be shown and analyzed in the subsequent works.
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