Final Exam of Information Theory in 2023 Fall

Xuan Guang

Collating: Mathzwj

1. Let $p(x, y)$ be given by

$$
\frac{1}{8}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

(1) Calculate $H(X), H(Y), H(X \mid Y)$ and $I(X ; Y)$.
(2) Calculate $D\left(p_{X} \| p_{Y}\right)$ and $D\left(p_{Y} \| p_{X}\right)$.
(3) Draw a Venn diagram for quantities in (1).
2. Denote a probability distribution $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and let $p=\max _{1 \leq i \leq n} p_{i}$. Show that:
(1) $H(\mathbf{p}) \geq-p \log p-(1-p) \log (1-p)$.
(2) $H(\mathbf{p}) \geq-\log p$.
(3) $H(\mathbf{p}) \geq 2(1-p)$.
3. Consider a random variable X that takes six values $\{A, B, C, D, E, F\}$ with probabilities $0.3,0.25,0.2,0.1,0.1,0.05$.
(1) Construct a binary Huffman code for the random variable and find its average length.
(2) Construct a quaternary Huffman code for the random variable [i.e., a code over an alphabet of four symbols (call them a, b, c and d)] and find its average length. (3) Construct a binary code for the random variable by starting with the quaternary Huffman code in (2) and converting the symbols into binary using the mapping
$a \rightarrow 00, b \rightarrow 01, c \rightarrow 10$ and $d \rightarrow 11$. Find the average length of the binary code constructed by this process.
(4) For any random variable Y, let L_{H} be the average length of the binary Huffman code for Y, and let $L_{Q B}$ be the average length of the binary code constructed by first building a quaternary Huffman code and converting it to binary using the mapping in (3). Show that $L_{H} \leq L_{Q B} \leq L_{H}+1$.
4. (Han's Inequality) For a subset α of $\mathcal{N}_{n}=\{1,2, \ldots, n\}$, denote $\left(X_{i}, i \in \alpha\right)$ by X_{α}. For $1 \leq k \leq n$, let

$$
H_{k}=\binom{n}{k}^{-1} \sum_{\alpha:|\alpha|=k} \frac{H\left(X_{\alpha}\right)}{k} .
$$

Prove that $H_{1} \geq H_{2} \geq \ldots \geq H_{n}$.
Note: In the exam, you only need to handle the case $n=4$.
5. A code is a fix-free code if it is both a prefix code and a suffix code. Let l_{1}, l_{2}, \ldots, l_{m} be m positive integers. Prove that if

$$
\sum_{k=1}^{m} 2^{-l_{k}} \leq \frac{1}{2},
$$

then there exists a binary fix-free code with codeword lengths $l_{1}, l_{2}, \ldots, l_{m}$.
6. (1) A channel has the following probability transition matrix:

$$
\frac{1}{8}\left[\begin{array}{lll}
6 & 1 & 1 \\
1 & 6 & 1
\end{array}\right]
$$

Calculate its capacity.
(2) A channel with output alphabet \mathcal{Y} and probability transition matrix $p(y \mid x)$ is said to be weakly symmetry of type II if there is a division $\mathcal{Y}=\bigcup_{i=1}^{n} \mathcal{Y}_{i}$ such that for $1 \leq i \leq n$, the part of $p(y \mid x)$ corresponding to \mathcal{Y}_{i} satisfies that the rows are
permutations of each other and the columns are permutations of each other. Derive a formula for the capacity of a weakly symmetry of type II channel.
7. The Z-channel has binary input and output alphabets and the following probability transition matrix:

$$
Q=\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right] \quad x, y \in\{0,1\}
$$

Find the capacity of the Z-channel and the maximizing input probability distribution.

