2015-2016 学年第一学期伯苓班复变函数期末试卷

第 1 题和第 4 题不太确定 QAQ

1. 设 \(f = u + iv \)，且为解析函数，证明 \(u \frac{\partial |f|}{\partial x} + v \frac{\partial |f|}{\partial y} = |f| \frac{\partial u}{\partial x} \)

2. 设 \(f \) 在 \(|z| \leq 1\) 上解析，而且当 \(|z| = 1\) 时，\(|f(z)| = 1\)。若 \(z_1 = \frac{1 + i}{4} \) 是 \(f \) 的 1 阶零点，\(z_2 = \frac{1}{2} \) 是 \(f \) 的 2 阶零点，求证 \(|f(0)| \leq \frac{\sqrt{2}}{16}\)

3. 设 \(0 < r < R, \Gamma_r : z = re^{i\theta}, 0 \leq \theta \leq 2\pi \)，证明：\(\frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 + r^2 - 2rR\cos \theta} d\theta = 1 \)

4. 试用 Rouche 定理判断方程 \((z + 1)e^{-z} = z + 2\) 在右半平面内零点的个数。

5. 设开域 \(D \) 中的解析函数列 \(\{f_n(z)\}_{n \geq 1} \) 紧一致收敛 \(f(z) \)。若在 \(D \) 中 \(f(z) \) 不恒为 0，则对 \(f(z) \) 的任何零点 \(z_0 \) 及 \(z_0 \) 的任何领域 \(V(z_0, \delta) \)，必有 \(N \)，使当 \(n > N \) 时，\(f_n(z) \) 在 \(V(z_0, \delta) \) 中必有零点。

6. 利用留数定理计算积分 \(\int_0^{2\pi} \frac{dx}{(2 + \sqrt{3}\cos x)^2} \)

7. 设 \(f \) 在 \(|z| < 1\) 中解析。若 \(|f(z)| \leq |f(z^2)| \) 或 \(|Re f = (Im f)^2|\)，求证 \(f \) 是常数。

8. 求分式线性变换 \(w = f(z) \)，将单位圆周变为直线 \(Im w = 0 \)，使得，\(f(0) = b + i, (b \in R) \)，\(f'(0) > 0 \)