2015级抽象代数期末考试(数学类)

命题人:王秀玲(回忆:张万鹏)

一、若环R的任意非零元a都满足$a^2 = a$，证明：R是交换环。

二、写出\mathbb{Z}_6的所有理想。

三、写出$\mathbb{Z}[\sqrt{-1}]$的所有单位。

四、写出$\mathbb{Q}(\sqrt{3}, \sqrt{5})$在$\mathbb{Q}$下的基。

五、设$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in F^{2 \times 2} \mid a, b, c \in F \right\}, I = \left\{ \begin{pmatrix} 0 & b \\ 0 & c \end{pmatrix} \in F^{2 \times 2} \mid b, c \in F \right\}$，其中$F$是数域。证明：$R$是$F^{2 \times 2}$的子环，$I$是$R$的极大理想。

六、设$f(x) = x^3 + 2x + 3, g(x) = x^3 + x$。
(1)在\mathbb{Q}上分解$f(x), g(x)$并写出最大公因式。
(2)在\mathbb{Z}_5上分解$f(x), g(x)$并写出最大公因式。

七、设α是方程$x^3 - 3x + 4 = 0$的根，写出$1 + \alpha$在$\mathbb{Q}(\alpha)$上形如$a\alpha^2 + b\alpha + c$的逆元。

八、设$R = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, (n, p) = 1 \right\}$。
(1)证明R是整环，并求R的分式域。
(2)证明R是主理想整环。

九、设K为F的扩域，$u \in K$是F上的代数元，且$\deg(u, F)$为奇数，证明：$F(u^2) = F(u)$。