2013-2014 学年第二学期伯苓班高等代数期末试题

一. (10 分) 设 ε₁, ε₂, ε₃ 为 3 维 Euclid 空间 V 的标准正交基。令

\[\beta_1 = \frac{1}{3}(2\varepsilon_1 + 2\varepsilon_2 - \varepsilon_3), \beta_2 = \frac{1}{3}(2\varepsilon_1 - \varepsilon_2 + 2\varepsilon_3), \beta_3 = \frac{1}{3}(\varepsilon_1 - 2\varepsilon_2 - 2\varepsilon_3) \]

那么 β₁, β₂, β₃ 是否是标准正交基呢？说明理由

二. (20 分) 用正交线性替换将下述二次型化为标准形:

\[\sum_{i=1}^{4} x_i^2 + 4 \sum_{1 \leq i < j \leq 4} x_i x_j \]

三. (10 分) 设 V 是数域 P 上 3 维线性空间, ε₁, ε₂, ε₃ 是一组基, f₁, f₂, f₃ 是其对偶基, 定义另一组基 e₁ = ε₁ - ε₃, e₂ = ε₁ + ε₂ + ε₃, e₃ = ε₂ + ε₃, 试求它的对偶基.

四. (15 分) 设 A 是数域 P 上的 n 阶方阵，证明 A 相似于 A’

五. (15 分) 设 V 是 C 上 n 维线性空间, A ∈ EndV. 证明：A 在某组基下的矩阵为对角矩阵的充要条件是 A 的任一不变子空间 W, 存在不变子空间 W’, 使得 V = W ⊕ W’

六. (10 分) 设 A 是欧式空间 V 的正规变换, 证明：ker A = ker A⁺, AV = A⁺V

七. (10 分) 对于 n 阶矩阵 A 和 B, 定义 A ⊕ B 为这样的分块矩阵, 其中 (i, j) 块为 \((\text{ent}_{ij}A)B, 1 \leq i, j \leq n\). 若 A, B 都是正定矩阵，证明：A ⊕ B 也是正定矩阵

八. (10 分) 求过 M(2, 1, 3) 的单叶双曲面 \(\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{9} = 1 \) 的两条直母线